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Y, Abstract

This work presents an alternative to current integral
approaches that do not accurately predict noi
localised rotor. The two-dimensional mode! of this study is
essent; an airfoil shape mounted on the side of
der which spins at transonic speeds two
walls. A finite-difference conservative
et i Rl s
the flow away an pre-
dicts the beginning of delocalisation and the i
wave propagation. The potential method has an
stability limit at a free-stream velocity of Mach 1.4 and
shows a troubling sensitivity to the choice of outer bound-
ary conditions. Methods for correctly handling these two
problems are shown. A two-dimensional experiment that
simulates the conditions assumed by the uter code is
du::hribcd. The computer p&dktion of the li:n'hdm“d
in the experiment is presented as are some limited exper-
imental results. Results taken from a i i
hovering rotor code show how the current two-dimensional
results correlate to those from an actual rotor. Results for
low-aspect-ratio rotors show a higher delocalization Mach
number for decreasing agpect ratio and a greater depen-

dence on thickness.
Introduction

High-speed impulsive (HSI) noise is emanated when
.mkmmcmuiuanammmm
shock leaves the blade and propagates into the free-stream.
This free-stream shock, or dslocalised shock, creates sev-
eral problems for integral methods. Earlier research has
been applied to this problem but with little success.!~3?
More recent works have fared better*~* with this “delo-
calization” problem, as Caradonna and lsom® termed this
spreading of the shock. Photographs of such delocalised
shocks radiating from model propellers were produced by
Hilton!° in 1938 and more recently by Tangler!! in 1977
for a model helicopter rotor in a forward condition.
A similar phenomenon is seen in hovering ter ro-
tor tests at high lt’ip-Mnd:-munbm. Hot-wire studies from
Schmits and Yu'? experimentally demonstrate the extent
of the su ic sones relative to the rotor on and around
the tip. Figure 1 shows results from their study along with
the associated in sound signatures as the tip-shock
delocalizes. These results are from a rotor model
with a NACA 0012 airfoil and aspect ratio of 13.7.

One of the most familiar integral formulations for solv-
ing acoustics problems was presented by Ffowcs-Williams
and Hawkings:!?
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Applications using the linear terms of this equation work
well except when a large shock appears in the flow.!* Even

the full nonlinear portion of the Ffowes-Williams and
Haw! (FWH) equation gives incorrect trends when a
rotor has a delocalized tip shock.!® Schmits and Yu!* use
the first, or monopole, term of the FWH jon in their
linear analysis of a hovering rotor. This le term has
dmtmeﬂmmthopudicudpmpuﬁwhmm

with the monopole or thickness term prediction.14:18

third and last term of the FWH equation is the
quadrupole term, which has no simple physical analogue
like the other two terms. Quadrupole terms describe the
fluid distortions and pressures over a volume near the blade
tip and are quite necessary to accurate of a dis-
turbance as it moves off the blade. This last term is &x-
tremely difficult to integrate or model, but its inclusion has
been shown to improve the pulse predictions significantly.
Yu et al.!}® completed a complex nonlinesr quadrupole so-
lution that greatly improves the solutions but still has
dificulty with delocalised cases.!” Perhaps a differential
method would work better in such cases.

There are several three-dimensional codes that model
the transonic rotor-tip flow field using finite-difference (FD)
formulations,!#:1° but these codes only predict the flow near
the rotor tip and tend to damp waves that spread off
the blade surface. Kirchhoff map a linear pressure
wave to some other physical point?? when provided with
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an accurate starting wave. , there is no direct way
to connect the pressure solution with the pressure .
fisld off the blade. .

Previous studies by Schmits and Yu,!* which show
the last 10% of a blade
that lift has little effect, indicate the
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short rotors typical of a propeller or tilt-rotor-type appli-
cation.
Governing Equations

The usual unsteady continuity and density equations
in cylindrical coordinates provide the basis for the finite-
difference code of this work. After transformation to
a rotating coordinate system, a computational variables
transformation?? yields the following nondimensional equa-
tions for programming:

(800 + (4V), =0 @
p=i-1 MU +VI-vAH (3)

where the velocitios U, Uy, and V are defined as
(Y + $4¢¢), Y, and (Y ¢,),, respectively, and where o is the
fluid ity, v is the ratio of specific heats, a is the free-
stream speed of sound, ¢ is the usual flow potential, r is the
radial dimension and distance, and # is the circumferential
dimension.

The density p and the velocity components 14, and
#, are nondimensionalised by ambient density a.nd by the
cylinder surface velocity, IR, mﬁnly, where {3 is the
angular velocity and R is the of the cylmdc The
radial distance r is nondimensionalised by chord lcn.th €
the circumferential variable ¢ is nondimensionalized by the
sector width occupied by the airfoil on the cylinder edge.
This sector width is also given by the inverse of the
ratio, AR, which is similar to the aspect ratio of a rotor b
and is defined as R/c in previously defined variables.
additional factor, Y, is introduced to convert the oa.lo of
thcndhldhunumubktocylindcndﬂlo‘th
factor Y is defined as r/R, which appears as the radial
distance in the equations below. Finally, M, = (IR/a is
the cylinder Mach number.

Further transformations for computational consid-
erations follow conventional procedures for conservation

forms: .33,24
(%).+(%),= @
0= [1 -1 A_:’,’_ (Ad2 +2Boeéy + co;)] S

The quantities U and V, called the contravariant veloc-
ity componcnu along the £ and n directions, respectively,
?bh«.ll .Mm;iquBCDandEandtht?
acobian, J, are groupe of various mapping tities that
arise during transformation; they are defined as

1
A=gE+YE

1
B= 7&00 +Yén,

C= ;.,z +Yn? )
D =&Y
E = nY

J = Ene — Eene

Numerical Solusion

A successive-line over-relaxation (SLOR) method
soives the differenced equations outlined below. An arti-
ficial density scheme builds in proper sones of dependence
and allows the use of simple central-difference operators in
all regions. Second-order-accurate formulas determine the

flux terms JU and 5V at midpoint locations. The con-
tinmtyequstmhdiﬂmudtom&hthctotdopcmr
centrally differenced about a node point:

v
5(’.',’)”(1):0 ™
where § indicates a central-difference operator. The U and

V terms are the velocities described previously and are
found as shown: b

Ujs1/3.8 = (Adg + By + D)jy1/2,8
Vias1/a = (Bde + Cédy + E)jrs1/2

where the A,B,C,D, and E metrics are found at the
node points, using standard second-order-accurate finite-
difference operators. All metrics quantities are found and
stored at node points (j,k),mdsmploumuamuud
for values away from grid nodes.

Thcdmxtyvdu-mdmthocmmuityoqunwn,
Pi+1/2, 80d Bj ay1/3, ATE

Bivisan = [(1 = v)plie1/a,n + Vis1/a,k Pivier/an

Pinsrrsa = [(1 = V)Pljns1/a + Vine1r/3 Pinemersa
where

®

| = +1 when Uj41/3 §0

9
m = 1 when V4 /24 §0 ©

Density is found after a sweep of the flow fleld has
updated all the ¢ values from the nondimensional equation

p=[1-02M3(U? + V2 -Y?))** (10)

where M, is the Mach number of the cylinder surface.
Borrowing from finite-volume techniques, the densities are
found at cell-centered locations (J+l?3. k+1/2), which are
then averaged to yield the needed values at
(i+1/2,k) and at ,k+1/22 This technique has been shown
by South in Hafes et al.2% to yield a more compact calcu-
lation cell for density. The cell-centered values require ¢
derivatives found separately from the derivatives used in
the continuity equation.

The switching function v determines when to start us-
ing an upstream density value and is hence controlled by
Mach number. Control for v in the £-direction is given by

V’+1/3 5 = MazT [0 1= 1/ .] for U,*.l/". >0 (ll)
and
Vi+1/3,4 = mes [0,1 - I/M},,,‘..] for U,q.;/,,. <0 (12)
Control in the vertical direction, or n-direction, is given
similarly.
A SLOR technique solves the linearized conmtinuity
equation. Linearisation comes from simply lagging the den-
sity one iteration step 90 that for each iteration, density is

considered constant and is updated after each
sweep of the flow field.

8 and Caradonna?® show an alternative to the
stan switched schemes which proves stable in almost
all regimes:

AVed- M2V, V,0+4,V =0 (13)
In this and su dl;ctiouthov.mdA.qmboh
represent and forward difference operators, re-
spectively, with the subecript danoting direction. Combi-
nations of these two symbols show higher derivatives such as

the second-order differences: V,V, for a backward differ-
enceor A,V for a central dilm« Fortunately this mix
of differencing operators closely corresponds to the artificial
density method and permita an easy analysis of stability,
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as will be shown briefly. Details of this correspondence are
explained in the paper by Steger and Caradonnas.?®

Stability Analysis of the Solution Scheme

A stability analysis of any finite-difference method
comes from the Von Neumann linear stability analysie
sLSA).SoIvh;futhnmpuﬂcmmmulhhm
ollowing expression, whose magnitude must be less than
one for stability:

{cos(a)+s[aina)}/
{2 - cosa + M*(1 + cos2a — 2cosa)+

Lantly (19
~ 2

ilsina + M?(2sina - sin2a)|}

where v is the computational cell aspect ratio (Ay/Az)?,
and a and 9 are the wave numbers for the z- and
directions, respectively.

The usual error-amplification portraits are shown in
Fig. 4 for the undamped and damped cases. As Mach num-
ber increases, an associated increase in amplitude for lower
wave numbers (low-frequency errors) is sesn. The stability
limit at Mach 1.4 is seen by the flat line, showing unity
gain for errors with wave numbers near sero. Any hi
speeds will quickly go unstable as shown in the curve
the Mach 2.0 case.

A damping term added to the iteration or correction
matrix allows stable solutions with higher Mach numbaers.
This damping term also inicreases the diagonal dominance
of the correction matrix; it simply adds a spatial operator
:l:l‘:: correction term in the general relaxation

*

%

(N+DV,)C* +wl¢" =0 (18)

where C™ is the correction (¢"*+! — ¢*); L¢" is the resid-
ual, which indicases bow {he taith difiaenes

plications for time-accurate codes.

Parametric studies of this damping D show that it
must incresse as M3/2 to maintain stable iterations. For
the cases shown, at Mach numbers of 2.0 and 4.0, damping
coefficients of —1 and —4, respectively, maintain stability.
The damping effect pulls the amplification factor curve to
the unity line in areas where it was previously very high.

g

Grid Genaration

A sheared “H” similar to grids used for
nonlifting airfoil , is used here for all mo-
tion cases. The cylindrical motion cases require

a more
sophisticated grid concentration in regions where the shock
pulse is expected to move into the flow field. The follow-
ing Poisson-lilke equation specifies grid concentration in one
direction only:

ran=C F(0) r

The C factor determines how much the grid clusters to
control function, F(O&.Tbo control function varies in
O-direction, so that grid clusters to any curve.

cnmun;l:zcmﬁwthlhmchwhﬁtklho
that grid cluster to the region where information from
the airfoil travels. The radial lines are specified separately.
This non-orthogonal clustering to a general line imparts
s skewing of the grid cells that crestes convergence and

1EEF
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stability problems for the solution algorithm. Hence,
& weak clustering is used. ouly

Boundary Conditions
Flow tangency at the body surface is enforced by

-Y B
Onliesy = (TZ.—' - Eée) [sody

0-Y+%Vu+v'

(a7
V=V e+V
The ( )’ quantities change, depending on the boundary lo-
cation as defined by the following:
U'=0 V= -Ml—; on outer boundary

1 .
U'am, | 4 7257.' at upper rear corner point
1

U'aF, V'=0; along aft boundary

The noarefiection boundary coandition above [Eq. (16)
produces much better solutions when proper (upetream
difference are used as nesded. This upstream
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2! is the cylinder radius and V is the uniform suction velocity produce a smaller disturbance. A large aspect ratio means
» at the surface, produces that the relatively short body must move faster to disturb
;; . R the air to send a disturbance off the tip to the sonic
DA u(r) = Qr (—) (19) circle. Additionally, larger aspect ratios also mean thereis a
e R greater distance from the blade tip to the linear sonic circle

where u is the velocity component in the #-direction, w i je circle i
. and v is the kinematic viscosity coefficient. The suction as a line where the {ir term of the rotational transforma-
¥ Reynolds number is defined as R, = VR/v, which is negs- tion equals the free-stream speed of sound. The distance
u tive because the suction velocity is negative, and the cylin- &omthocyﬁndcmth‘nmicchhhmindmrds
. der angular speed is given by (1. Various testa show that b_yB(l/M.-l),w' i

o) the pressures can be well predicted by using R, = —4. given cylinder surface Mach number M,. A larger aspect
y This value yields the same pressure (—1.1 Ib/in.3) that was  ratio requires a larger disturbance to bridge the increased
N measured in the experiment at the 0.5-chord location and gap.

produces a reasonable looking flow-velocity profile. This on aspect ra-

" v s A Figure 13 shows a consistent dependence
AL modified velocity introduces a minor variation from theas- . sttt .
b 1 irrotational flow field, which predicts density with a g:lf:;mmturfodt:zc?“.mbodythm-ﬂtyp-
< negligible 5% error. However, this correction only matches . o0 Tho! very
[~ the magnitude of the main pulse and fails to match to over- lu:kornudd.mco
: all pulse shape seen in Fig. 9. bation is so small, connection to the sonic ci
o A detailed model of the geometric boundary condi- very high Mach number. This high Mach wumber throws
: tions on the cylinder surface reflects the exact variations dhtmbmo“hlwymmwm
from circular. Pressure results using the exact geometric  waves, a result of nonlinear acoustic velocity . These
. conditions for the cylinder are shown in Fig. 10 for a do- Mwm@mmmhmm
main of a little over one-half of a revolution. The pressure flow. Since delocalisation comes from such a Mach wave,
results now show a great deal of similarity to measured ex- the distance in chords is irrelevant. Small disturbances of

,,\'. perimental pressures (Fig. 11), except that the computed various lengths produce almost identical waves. With this
N magnitudes are still high by a factor of 5. The smaller pulse  loss of chord-length dence, the distances in rotor radii
~ after the large pulse from the airfoil bump is now well mod- become important. radii distances are given as a

a eled, and the siowly rising positive-pressure hump observed  function of cylinder Mach number: g}~ — 1. The delocalisa-
* in the test is now seen. Hence, an accurate model has been ;o Mach number now depends only on this distance and

:"::‘_ m;th:c::o_nmulm,m' Now only a correction to the  f5¢ curve as aspect ratio changes for very thin bodies.
A N ° Since the above approach is strictly two-dimensional,
:j Thl:wtcylindr-hp‘;fcmdu;mm&=-4 tip effects are not included. A with three-
exponen thttwllpmimu Oun uce N
matches to the ot 1 :'I“I such dimu:mdr-nlhmhwhnﬁp ects are important

rected case are shown in Fig. 12 where they are compared evidence.?! N
with the observed experimental results for the 0.5-chord lo- mw&%&:mw; .olo:
cation. The boundary layer has smoothed over the shatp  of perameters similar to those that are reflected in Fig. 13.
peaks seen in the inviscid prediction. However, the pulse Btk of the studies mentioned in this section use
magnitudes are much closer than those seen in Fig. 11. The  pe porabolic-arc sirfoil section. The
addition of exact boundary conditions incresses the main~ g} oy very similar trends to those from the two-dimensional
peak magnitude, but thers has been no attempt to correct o 5r00ch ‘seen in Fig. 13. The results for the thicker blade

54,

.',.‘.

> this peak. Since surface details are most important in this  sfiw s smocth dependence thickness and aspect
o case, a grid is used that is clustered to the body with an mb."l‘ln Mnmmhmm
N almost uniform grid in the circumferential direction. The wmﬁemmbmmmmm-
- computational results at points farther away from the sur- oy cyrve. As the blade gots thinner, the same flattening
v face show a definite loss of resolution, although the results (1 curve is seen. The 6%-thick biade result is slightly
- farther out show the same trends of smeared pulses seen in  copcave o that the delocalisation Mach number actually
. the 0.5-chord plot of Fig. 12 increases for smaller aspect ratios. The two-dimensional
. results do not show this effect until blades that are thinner
AN Applications than 2% are used.
:-' The tip relief in the thres-dimensional cases explains
%y This section derives the observed two-dimensional re-  both the higher overall delocalisation Mach number and
mlanthuthqcomrnwithmudmﬂu&mn the delay in curve shape reversal. The extra dimension
. real helicopter rotor. Figure 13 shows resuits from this present in the full rotor cases allows extra room for dis-
! two-dimensional code in terms of helicopter rotor nomen- turbances to dissipate. Hence, a higher Mach number is
clature. The two-dimensional “aspect ratio” used here sim-  required in the three-dimensional cases to achieve a distur-
3 ply means the radius of the rotating cylinder divided by the  bance strong enough to delocalise the flow. Since higher de-
*ﬂ chord length of the body attached to the cylinder’s edge. localisation Mach numbers appear overall, the Mach wave
:". This aspect ratio is similar to the usual helicopter definition  delocalisation discussed above becomes im; for the
. of rotor radiue divided by blade chord. thkynbhdor-nlu.mnhuthocﬁmw is concave.
: The general effect of various sspect ratios and thick- mmmmmmmumm
>, ness ratios is not to obtain a delocalisa- -9
tionhih‘:hmn:c.l plygyhtnri::hdt This basic
principle can be achieved by using a thinner body or a Conclusions
o large two-dimensional aspect ratio, which ¢ ds to a
2y long, slender rotor blade on a real helicopter. Using thinner Techniques were developed for application to potential-
2, bodies is rather obvious since & thinner body is known to  flow computational fiuid dynamics methods for predicting
)
(R4 L)
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acoustic waves. Using the potential-flow equation to define
the outer boun values for the potential, ¢, alleviates
one problem of reflected waves. A stability limit problem
occurs at Mach numbers above 1.4, butlddmg;dlmpmg
factor to the relaxation equation nllm ln;har speeds. This

damping factor comes from a linear equation analysis, and a
demonstration of how it controls divergence was presented.

The computational results show a definite change in
the flow field when delocalisation occurs. The pressures
found away from the spinning body do not show shock-
like waveform seen in hovering model-rotor tests, since a
two-dimensional wave solution tends to damp discontinu-
ities as opposed to the three-dimensional solution which

preserves spikes in pressure.

A two-dimensional experiment was conducted, and
limited experimental results wers presented to support the
findings of the computer prediction. A set of computer-code
corrections for the exact cylinder shape and the boundary-
layer entrainment produces results similar to those seen in
the experiment.

Parametric variations with the two-dimensional com-
puter code show a smooth dependence on airfoil thickness
and aspect ratio for configurations similar to actual heli-
copter rotors. An unusual lack of aspect-ratio influence
occurs for very thin airfoil sections (e.g., 2% and less) for
which thinner disturbances create delocalizsation just by
starting a Mach wave that is independent of chord length
and, hence, aspect ratio {radius/chord).

Higher delocalisation overall are seen in the
three-dimensional rotor code owing to tip-relief effects,
which reduce any tip disturbance and thereby require a
higher speed to delocalize the flow. The reversal of de-
pendence on aspect ratio occurs for thicker blades in the
rotor case but for about the same Mach number as the
two-dimensional model case. This indicates that at such a
high speed, Mach waves are sufficient to delocalise the flow.

The model results and the rotor results show a clear
correlation. The region where tip-relief effects are impor-
tant is shown and the two-dimensional model is shown to
predict the expected delocalisation Mach number for a real
helicolzut rotor based on the three-dimensional rotor code
correlations.
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